Inspection is a necessary but non-value-adding activity whose purpose is to protect the customer from poor quality. We should therefore do as little as possible, upon condition that our inspection plan meets the customer’s requirement. Inspection plans with acceptance numbers of zero (c=0) minimize the sample size, albeit at the cost of a higher producer’s risk of rejecting lots at the specified acceptable quality level (AQL).
WHY SHOULD YOU ATTEND?
This presentation will show how to define c=0 plans whose customer protection is equivalent to that of the corresponding ANSI/ASQ Z1.4 (formerly MIL-STD 105) plan.
AREA COVERED
- How to use ANSI/ASQ Z1.4, including the definition of the sampling plan based on the inspection level, acceptable quality level (AQL), and lot size.
- How to use the standard’s switching rules to move between normal, tightened, and reduced inspection where appropriate
- Understand the benefits of double and multiple inspection plans in terms of their ability to accept good lots very quickly, and reject bad ones quickly, to reduce the average sample size.
- Convert any ANSI/ASQ Z1.4 plan into a zero acceptance number (c=0) plan that provides equivalent or better protection against poor quality at the rejectable quality level (RQL). (ANSI/ASQ Z1.4 plans do not have formal RQLs, but we pretend that the nonconforming fraction for which the consumer’s risk of acceptance is 10% is the RQL). A c=0 plan has a smaller sample size than any single, double, multiple, or sequential sampling plan.
- Nothing is free in industrial statistics, though, and the cost of less inspection is a higher producer’s risk of rejecting lots at the AQL. A c=0 plan should therefore be used only when quality is far better than the specified AQL.
- Generate an operating characteristic (OC) curve that compares the protection from the c=0 plan to that of the original ANSI/ASQ Z1.4 plan to gain the customer’s agreement for the use of a c=0 plan.
Attendees will also receive an Excel spreadsheet that shows the operating characteristic (OC) curve for a c=0 plan and compares it to the original ANSI/ASQ Z1.4 plan. Attendees can replace the example’s specification with their own.
WHO WILL BENEFIT?
- Quality Managers
- Quality Inspectors
- Quality Technicians
- Quality Engineers
- Engineering Departments
This presentation will show how to define c=0 plans whose customer protection is equivalent to that of the corresponding ANSI/ASQ Z1.4 (formerly MIL-STD 105) plan.
- How to use ANSI/ASQ Z1.4, including the definition of the sampling plan based on the inspection level, acceptable quality level (AQL), and lot size.
- How to use the standard’s switching rules to move between normal, tightened, and reduced inspection where appropriate
- Understand the benefits of double and multiple inspection plans in terms of their ability to accept good lots very quickly, and reject bad ones quickly, to reduce the average sample size.
- Convert any ANSI/ASQ Z1.4 plan into a zero acceptance number (c=0) plan that provides equivalent or better protection against poor quality at the rejectable quality level (RQL). (ANSI/ASQ Z1.4 plans do not have formal RQLs, but we pretend that the nonconforming fraction for which the consumer’s risk of acceptance is 10% is the RQL). A c=0 plan has a smaller sample size than any single, double, multiple, or sequential sampling plan.
- Nothing is free in industrial statistics, though, and the cost of less inspection is a higher producer’s risk of rejecting lots at the AQL. A c=0 plan should therefore be used only when quality is far better than the specified AQL.
- Generate an operating characteristic (OC) curve that compares the protection from the c=0 plan to that of the original ANSI/ASQ Z1.4 plan to gain the customer’s agreement for the use of a c=0 plan.
Attendees will also receive an Excel spreadsheet that shows the operating characteristic (OC) curve for a c=0 plan and compares it to the original ANSI/ASQ Z1.4 plan. Attendees can replace the example’s specification with their own.
- Quality Managers
- Quality Inspectors
- Quality Technicians
- Quality Engineers
- Engineering Departments
Speaker Profile

William A. Levinson, P.E., is the principal of Levinson Productivity Systems, P.C. He is an ASQ Fellow, Certified Quality Engineer, Quality Auditor, Quality Manager, Reliability Engineer, and Six Sigma Black Belt. He is also the author of several books on quality, productivity, and management, of which the most recent is The Expanded and Annotated My Life and Work: Henry Ford’s Universal Code for World-Class Success.
Upcoming Webinars

Leverage AI-Powered Tools for Talent Acquisition: Best Prac…

6-Hour Virtual Seminar on Learning the Highlights of Excel …

With Mandatory Paid Leave Gaining Ground Is It Time To Do A…

Form W-9 Compliance: TIN Verification, B Notices, and Avoid…

How to Give Corrective Feedback: The CARE Model - Eliminati…

Tattoos, hijabs, piercings, and pink hair: The challenges …

Stress, Change And Team Resilience Through Humor: An Intera…

AML Regulatory Insight for Q1 2025: Implementing recent cha…


Elevate Your Workplace Wellness: 10 Critical Wellness Facto…


How to Write Right for Better Business Communication




Transforming Anger And Conflict Into Collaborative Problem …

Improving Employee Engagement & Retention Through Stay Inte…

Gossip-Free: Leadership Techniques to Quell Office Chatter

Excel - Pivot Tables - The Key To Modern Data Analysis and …


Onboarding Best Practices for Millennial and All Employees


Beat Workplace Burnout: 10 Proven Techniques to Manage Your…

